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ABSTRACT  

 

Redblade is a multi-functional autonomous robot with 

two seasonal configurations which allow it to plow snow 

in the winter and mow grass in the summer.  We are 

currently on the 5th generation of the Redblade platform 

which is an updated version of last year's platform with a 

new stereovision sensor and redesigned software 

architecture.  This report presents the design and 

implementation of the Redblade mechanical platform, 

sensor components, software architecture, control 

algorithm, and safety systems. 
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INTRODUCTION  

 

Autonomous robots capable of performing many 

functions with accuracy and reliability in a timely manner 

are highly desired in modern society.  Redblade is 

designed as an expandable host to perform in multiple 

roles.  It represents the next stage evolution of a multi-

functional autonomous robot since it is able to compete 

in: autonomous navigation during the Intelligent Ground 

Vehicle Competition, autonomous snowplowing during 

the ION Autonomous Snowplow Competition, and 

autonomous lawn mowing during the ION Robotic Lawn 

Mower Competition.  Redblade has been competing since 

the inception of both ION sponsored competitions starting 

with the ION Robotic Lawn Mower Competition in 

2004
[1]

 followed by the ION Autonomous Snowplow 

Competition in 2011
[2]

, however this year marks the first 

entry of Redblade into the Intelligent Ground Vehicle 

Competition
[3]

.  This paper describes Redblade’s 

mechanical platform, sensor electronics, control 

algorithms, and safety mechanisms that make autonomous 

operation possible. Redblade's objective is to compete and 

win the 21
st
 Annual Intelligent Ground Vehicle 

Competition.  

 

More information, pictures, videos, and news articles can 

be found at www.muredblade.com
[4]

.  

 

 

TOP LEVEL REQUIREMENTS 

 

An important step in engineering design is defining the 

top level requirements for the system being developed.  

This ensures that each necessary function that a system 

must perform is given the appropriate amount of 

consideration.   

 

Table 1 presents a summary of the top level requirements 

for Redblade. 

 

Requirement 
Specification 

Component 
Used 

Component 
Accuracy 

Position 
Accuracy:  

< 22 cm 

Novatel: 

GPS-702-

GGL 

Field test 

results: 

<16 cm 

Heading 
Accuracy:  

< 2o/min 

MicroStrain: 

3DM-GX3-25 

Static: ± 0.5° 

Dynamic: ± 2.0° 

Top speed: 
4.03 m/s 
(9 mph) 

RoboteQ:  

AX2850 

NPC Robotics:  

NPC-B81HT 

      N/A 

E-Stop Time:  
< 2 sec 

Remote Kill 

Switch: 

In-house 

Field test 

results: 

<0.5 sec 

E-Stop Stopping 
Distance:  

< 2 m 

Mechanical 

Platform: 

In-house 

Field test 

results: 

<1 m 

Maximum 
Scalable Incline: 
40o 

 

N/A 

 

N/A 

Battery Life 
(idle): 10 hrs 

Deka Solar: 

   8GU1-DEKA 

N/A 

Battery Life 
(active): 4 hrs 

Deka Solar: 

   8GU1-DEKA 

N/A 

Table 1: Summary table detailing the top-level requirements for the 

accuracy of each component. 

 

Additional requirements include the need for a higher 

amp-hour power supply, a dependable mechanical 

platform, enhanced control algorithm, and a CPU capable 

of handling an intense computational burden.  These are 

discussed later in the report. 

 

VEHICLE DESIGN 

 

This section describes the overall mechanical design of 

Redblade.  We will discuss plowing strategy, mechanical 

design, navigation system design, control system design, 

software design, and system integration. 
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A. MECHANICAL DESIGN 

 

Redblade’s mechanical platform consists of two tractor-

style drive wheels for traction in the rear, two caster 

wheels for stability in the front, and an aluminum chassis 

with polycarbonate paneling that houses the electrical 

systems.  An overview of the mechanical platform can be 

seen in Figures 1 and 2. 

 

The primary material that was used for the chassis is 

80/20 aluminum bar, chosen for its ease of construction 

and the large variety of materials that are able to be 

mounted to it
 [5]

.  Plate steel was used to mount electric 

motors due to the need for increased strength.  Clear 

polycarbonate surrounds the chassis to protect the 

electrical components from the outside environment and 

allows us to easily diagnose problems. Thanks to the 

lightness of the aluminum frame and the Plexiglas siding, 

we are able to drastically reduce power consumption 

compared to our winter setup which uses 225 lbs of lead 

bricks which could simulate a heavier metal chassis.  

 

 

Figure 1: Side profile of Redblade with dimensions shown. 

 

 

 

Figure 2: Bottom profile of Redblade with dimensions shown. 

 

This year's major changes include: adding the Bumblebee 

2 stereovision sensor from Point Grey
[6]

, which is placed 

on our elevated sensor rack, angled downwards. In order 

to increase the viewing angle of our Bumblebee 2, we 

elevated our sensor rack an additional two feet. The 

Propak-v3 GPS receiver
[7]

 is now placed directly above 

the wheel base to aid in the path planning algorithm.  The 

robot has been upgraded to be driven by two NPC 24 volt 

electric high torque motors with 24:1 reduction gearboxes 

that together can pull 120 amps continuously
[8]

. 

 

The robot has a total of six 12 volt, 32 amp-hour gel-cell 

batteries
[9]

. Two sets are wired in series to make 24 volt 

sets used to power the drive motors. Since only one set is 

in use at a time, we can swap to the second set without 

having physically change out batteries and quickly swap 

to the fully charged set using PowerWerx
[10]

 quick 

disconnects. The last two 12 volt batteries are wired in 

parallel for a total of 64 amp-hours and are used to power 

the computer, router, safety system, etc. Figure 3 shows 

the wiring diagram for Redblade's electrical system. 
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Figure 3: Wiring diagram for the Redblade power system. 

 

B. NAVIGATION SYSTEM DESIGN 

 

A MicroStrain 3DM-GX3-25 IMU
[11]

 is used to determine 

the vehicle heading.  It has an adjustable data rate to 

facilitate interfacing with different clients.  Redblade does 

not use a magnetically corrected heading that is offered 

by this sensor.  This IMU was shown to accumulate 

approximately 0.1
o
 of error for every minute of polling 

time.  

 

The NovAtel’s ProPak-V3 is a durable, triple frequency 

GNSS receiver that tracks GPS + GLONASS as well as 

L-Band and SBAS.  This receiver was chosen mainly due 

to its OmniSTAR
[12]

 capability, which would allow us to 

attain a more accurate GPS solution using OmniSTAR’s 

virtual reference station correction information. For the 

GPS antenna, we choose the NovAtel GPS-702-GGL that 

supports L1 and L2 frequencies for GPS + GLONASS as 

well as support L-Band for OmniSTAR. This antenna is 

also durable and waterproof, has excellent multipath 

rejection, and has a highly stable phase center with 

minimum variation between the L1 and L2 centers. 

OmniSTAR has several subscription services from 

OmniSTAR VBS (sub-meter accuracy with less than 1 

meter error), OmniSTAR XP (15cm accuracy), 

OmniSTAR G2 (10 cm accuracy with GPS + GLONASS 

which is great in multipath environments), and 

OmniSTAR HP (10 cm accuracy with GPS L1/L2 which 

great for high performance in open area). We chose to go 

with the OmniSTAR HP subscription since it would give 

us the most accurate gps position during the IGVC, which 

OmniSTAR generously gave us a free 90 day subscription 

(renewable) for our robotic research and design.  

 

Two US Digital E7MS quadrature optical encoders
[13]

 

were installed on both left and right wheels of the vehicle. 

 Each encoder sends its signal on two different channels 

with 90 degree offset.  By using two channels it is 

possible to determine the direction of movement if there 

is no slippage.  When the robot is moving forward, one 

channel emits a pulse before the other.  The RoboteQ 

AX2580
[14]

 motor controller uses these encoders in its 

internal feedback loop to ensure consistent speeds on both 

motors. 

 

Each sensor may provide inaccurate data depending on 

the condition of the robot.  This is discussed in more 

detail in the Failure Modes & Recovery Actions section.   

 

For obstacle detection, we use a SICK Laser 

Measurement Sensor (LMS) 200 also known as a LIght 

Detection And Ranging (LIDAR) sensor. The LMS 200 is 

an extremely accurate 2D distance measurement sensor 

that can be interfaced over RS-232 or RS-422 and 

provides distance measurements over a 180 degree area 

up to 80 meters away (10 meters away for objects with 

only 10% reflectivity). This sensor works by beaming out 

a fan of eye-safe laser light off a rotating mirror and any 

object that breaks the fan will reflect the laser light back 

to the sensor, which can be calculated into a distance 
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measurement based on the time it takes to come back to 

the sensor. The LMS 200 has both a 'mm mode' where it 

gets back distance measurements in millimeters (with a 

detection range of up to 8.181 meters) and 'cm mode' 

where it gets back distance measurements in centimeters 

(with a detection range of up to 81.91 meters). It also has 

the ability of scanning angular range of 100° with angular 

resolutions of 1°, 0.5°, and 0.25° (shown in Figure 4 

below) and angular range of 180° with angular resolutions 

of 1° and 0.5° (shown in Figure 5 below). The LMS 200 

has a scanning frequency of 75 Hz and response time of 

13-53 ms. The distance measurements from testing have a 

systematic error of +/- 15mm and statistical error (1 

sigma) of 5 mm. 

 

Figure 4: Measurement range 40° to 140° (view is from above, scan 

happens from right to left) 

 

Figure 5: Measurement range 0° to 180° (view is from above, scan 

happens from right to left) 

 

For our setup, we are in 'mm mode' using an angular 

range of 180° with an angular resolution of 0.5°, which 

gets us 180° vision of obstacles in front of our robot with 

a total of 361 different millimeter range measurements of 

obstacles less than 8.181 meters away from the sensor. 

 

C. PROCESSOR & SOFTWARE DESIGN 

 

All system processes are controlled by the onboard PC 

running a Linux installation.  Communication with this 

device is accomplished via direct connection or through 

an on-board wireless router.  A processor capable of 

handling a high computational load is needed.  Figure 6 

shows the resulting computer platform.  Table 2 details 

the platforms specifications. 

 

Because Redblade was required to function in a vast 

range of environments, weather-proofing was required to 

ensure safe and reliable operation.  A standard hard drive 

contains components that are likely to freeze in low 

temperatures.  Redblade uses a solid-state drive (SSD) to 

mitigate this risk as well as increasing shock resistance 

and speed. In addition to having better temperature 

endurance, the SSD is able to withstand much higher 

degrees of vibration and impact.  The power consumption 

of the computer as a whole is reduced 85% from 

approximately 20 Watts to no more than 1.7 Watts.  

 

 

Figure 6: Redblade's computer platform in its housing.  This housing 

can be easily removed from the vehicle if necessary. 

 

Component Manufacturer  Performance 

CPU Intel i7-2600K 3.4GHz quad-core 

Memory Corsair XMS 16 GB 

Solid-State 

Drive 
Intel 320 Series 80 GB 

Table 2: Computer platform specifications. 
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Our software is written in C or C++ for speed. The 

measurements from all of the sensors will enter our ROS 

navigation node which will determine how to control the 

drive motors.     

 

A more detailed representation of the component 

integration can be seen in Figure 7.  The red boxes 

represent sensors while the blue boxes represent other 

physical components.  The green boxes gather all of the 

information from these sensors and components and 

perform the communication between them and the 

computer. 

 

 

Figure 7: System integration block diagram. Note that some sensors are 

not used during IGVC operation. 

 

D. SYSTEM INTEGRATION 

 

Redblade features a three-layer system architecture that is 

abstracted in Figure 8.  The top layer is the navigation and 

obstacle avoidance sensor suite.  The current generation 

of the Redblade navigation sensor suite includes a 

Novatel GPS-702-GGL antenna with a ProPak-V3 

receiver, a MicroStrain 3DM-GX3-25 inertial sensor, and 

two optical wheel encoders as part of the integrated motor 

drive system.  The obstacle avoidance sensor suite 

includes our SICK Lidar and Bumbleebee 2 cameras. 

 

 

Figure 8: Three layer system architecture abstraction.  Note that the 

remote monitoring and control is optional.  The latter is disabled during 

autonomous operation. 

 

The middle layer is the collection of software that 

provides driver functions for the sensors, sensor fusion 

algorithms, path planning, and vehicle motion control 

algorithm.  The bottom layer is the mechanical platform, 

electronics hardware, including the motor controller, 

safety systems, power supplies, and processors that carry 

out the software functions.  

 

Redblade utilizes the three navigation sensors (GPS, 

IMU, and optical wheel encoder) to determine its 

position, heading, and velocity (PHV). The vehicle’s PHV 

information along with its predetermined destinations is 

processed by an on-board computer that implements a 

Proportional-Integral-Derivative (PID) control algorithm 

to adjust vehicle heading.  Both remote and on-board 

emergency kill switches allow an operator to stop all 

robotic motion. 

 

E. SOFTWARE STRATEGY 

 

ROS (Robot Operating System) is an open source 

software suite that promises to democratize software 

development in the general field of robotics. ROS 

software consists of libraries and tools that provide 

hardware abstraction, device drivers, visualizers, 

message-passing, package management and more. 

Computation in ROS is segmented into a data abstraction 
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called a node. Each node in ROS is compiled in C++ or 

Python. Nodes can perform a wide variety of tasks such 

as sensor measurements, data processing or controller 

computation or data visualization. Each node has the 

ability to publish data to other nodes or subscribe to data 

streams provided by other nodes. 

 

Each node in ROS runs on a separate CPU thread, 

meaning that all 8 cores on the CPU are saturated for high 

speed operations. Furthermore, our CPU is overclocked to 

3.8GHz and 16 GB of RAM is installed to accommodate 

for the temporary storage for large data structures and 

caching. In this way, much of our data can be handled 

without reading and writing to disk. For further speedup, 

programs using OpenCV and Eigen are compiled with 

SSE intrinistics to enable vectorization. 

 

NAVIGATION 

 

 

A. MAPPING 

 

Redblade uses a collection of ROS nodes that work 

together in order to implement SLAM (Simultaneous 

Localization and Mapping); slam_gmapping, 

base_local_planner, base_global_planner, and 

move_base.  

 

When Redblade starts a run it begins creating a map with 

the origin of its local and global reference frames at its 

starting point. The local coordinate frame is centered 

between its wheels with the x-axis pointing towards the 

front and the y-axis pointing towards its left side. This 

local frame will move along with Redblade wherever it 

goes, however the origin of the global frame stays static.  

 

As the robot moves through the course it samples point-

clouds from the Bumblebee 2 and Lidar at a rate of 5 hz. 

In order to use these readings from a correct frame of 

reference Redblade uses a node based on a transform tree 

that shifts the coordinates of each point-cloud based on 

the sensors translation distance in x,y,z and rotation angle 

in roll, pitch, yaw from the origin point of the robot.  

 

The Bumblebee 2 point-cloud is then pre-analyzed by a 

program using OpenCV to perform a Canny Edge 

Detection algorithm that will identify white lines, barrels, 

and colored flags, mark them as obstacles, and pass this 

new point-cloud to the costmap_2d  node. The Lidar data 

is fed directly to the costmap_2d node.  

 

Inside the costmap_2d node any data points within a 

designated radius of 20 feet from the center of the robot 

are treated as obstacles. This radius is imposed to prevent 

noise at the limits of our sensors’ ranges from being 

mistaken as obstacles. These points are then used to 

populate a voxel 3-D grid which acts as our map, on 

which each point holds one of three values; unseen, 

obstacle present, or no obstacle present.  

 

Of course, In order for the robot to plan a path the robot 

must have a goal to reach, which may be set through a 

configuration file that lists the different provided GPS 

waypoints. Once Redblade has come within a given 

radius of its current waypoint, it will then move on to the 

next point in the list until the list is exhausted. However, 

in order to reach each GPS waypoint Redblade must set a 

series of smaller points on our map that help it move 

around the known obstacles. In order to do this we use 

base_local_planner and global_local_planner nodes are 

able to plan the shortest trajectory path towards our goal--

a GPS waypoint--that avoids the known obstacles. 

 

Thanks to the costmaps, once the robot has observed an 

obstacle it will remember that for the rest of its run, which 
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means that Redblade will not take the same dead-end 

twice. 

 

B. EXTENDED KALMAN FILTER 

 

In our current setup, we have five sensors.  Some of these 

sensors have very fast update rates such as the IMU and 

the wheel encoders; however these sensors are not very 

accurate by themselves.  For instance, the IMU is known 

to have drifting problems.  In order to make the best of all 

of the sensor measurements to obtain an accurate estimate 

of the current position and the positions of the 

surrounding obstacles, an extended Kalman Filter is used.  

The idea behind a Kalman Filter is any sensor, regardless 

of how bad it is, can be integrated into the robot to 

provide a better estimate of its location and surroundings.   

The Kalman filter contains two crucial ingredients: a 

dynamics model and a measurement model.  The 

dynamics model can model the position and error 

covariance of the robot’s physical position in the absence 

of sensor measurements.  For our platform, this model 

gives information about x and position in addition to x 

and y velocity, heading, angular velocity, angular 

acceleration and IMU drift bias.  The IMU is known to 

have an error bias that accumulates over time and in order 

to properly model this sensor, its error bias needs to be 

included in to the dynamics model.  The overall dynamics 

model can be formulated as the following set of linear 

equations 

 

 is the current state of the robot,  is a matrix of 

coefficients that relate the current state of the robot to the 

past state of the robot.   is the control input which 

includes motor speeds and,  is a matrix of coefficients 

that relate the current state of the robot to the control 

inputs.  is a random white Gaussian vector with a 

known covariance representing the noise in the robot’s 

environment. 

 

The measurement model gives information about reliable 

the sensor readings are.  For our platform, we have five 

different measurement equations – one for each sensor.  

In the original Kalman filter equations, all of the 

equations in the dynamics and sensor models must be 

linear.  However, since both the LIDAR and stereovision 

cameras are used as range sensors for SLAM, and range 

equations are nonlinear, a linear approximation must be 

made for these sensor measurements – a common 

technique used in the Extended Kalman Filter. The 

overall measurement model can be represented by the 

following set of linear equations. 

 

 is the current set of measurements and   is the a 

matrix of coefficients that relate the current robots state to 

the current set of measurements.   is a random white 

Gaussian vector with a known covariance representing the 

noise in the sensors measurements.   

 

Using the dynamics and sensor models, the propagation 

equations can be readily applied as follows: 

 

 

Where  signifies the estimate of the current robot’s 

state without measurements,  is the error covariance 

representing the uncertainty involved in estimating the 

robots current state and is the covariance of the .  

These propagation equations are critical for calculating 

the estimated position and uncertainty in the absence of 

measurements.  The presence of measurements, the 

update equations can be applied as follows: 
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Where denotes the robot’s state and denotes the 

robots uncertainty after an update.  It has been shown that 

this newly update readings always improve upon existing 

sensor readings. 

 

C. STEREO IMAGE PROCESSING 

 

To handle obstacle avoidance and line detection, Point 

Gray’s the Bumblebee2 is used.  These stereo cameras 

provide images at a frame rate of 20fps at with 0.8MP at 

1032 by 776 pixel resolution.  The Bumblebee 2 cameras 

can generate 3-D point clouds with color information and 

are accurate up to 5 meters.  In order to integrate these 

cameras into ROS, these cameras need to be calibrated.  

Camera calibration consists of tuning two sets of 

parameters: intrinsic parameters and extrinsic parameters.  

Intrinsic parameters take into consideration the distortion 

of the cameras.  Extrinsic consider the physical position 

of the cameras relative to each other necessary for 

conducting stereo rectification.  Stereo rectification is 

used to generate point clouds that also give depth 

information about each pixel seen by the Bumblebee. 

 

 

Figure 9: Camera calibration conducted using the ROS camera 

calibration program.   

 

The ROS camera calibration program collects pictures 

simultaneously with both cameras and identifies the 

corners of the checkerboard in order to calculate these 

camera calibration parameters.  Once the cameras are 

calibrated, images retrieved from the Bumblebee2 are sent 

to the ROS stereo image pipeline where undistorted 

images, disparity images and point clouds are generated. 

 

   

Figure 10: The left and middle images are raw images from the 

Bumblebee2.  The right image is the disparity image generated by the 
ROS stereo image pipeline 

 

The point clouds from the ROS stereo image pipeline are 

then used for obstacle detection and line detection.  The 

Canny Edge Detection algorithm is applied on the color 

information provided by the point clouds for position 

estimation of the obstacles and white boundary lines. 

 

D. CONTROL SYSTEM DESIGN 

 

Redblade uses a PID control algorithm for navigation 

between waypoints
[15]

.  This algorithm adjusts wheel 

speeds based on present and past errors.  We have two 

methods of defining the “error” of our robot.  The first 

method drives heading error to zero and the second drives 

the distance from a line to zero.  We are in the process of 

evaluating the performance of both approaches. 

 

The first method starts by accepting a waypoint vector as 

its input.  This waypoint (xd, yd) will be the destination 

waypoint for this method. (x0, y0) is the starting point.  

Both of these waypoints are defined in a local ENU 

reference frame with the origin being where our robot 

began.  At any point during its travel between these two 

waypoints, its position (x, y) can be found with the GPS, 

and its heading (ϴ0) can be found with the IMU.  Using 

this current position (x, y) and the destination (xd, yd), the 

desired heading (ϴd) can be calculated using equation (1): 

 
(1) 

The difference between ϴd and ϴ0 serves as the error 

input to the PID loop.  When the KP, KI, and KD 

coefficients are selected correctly, they create a signal 
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which drives the motors and minimizes this error.  Figure 

11 shows a diagram of this error. 

 

 

Figure 11: Diagram of how the PID error in heading is calculated. 

 

Figure 12 below shows a block diagram of the PID 

feedback loop using this method. 

 

 

Figure 12: PID feedback loop using the first method that drives the 

heading error to zero. 

 

The motor controller model is designed to take the update 

rates of all our sensors and controllers into account.  

Based on our wheelbase width, acceleration speeds, motor 

controller update intervals, and PID update interval we 

were able to construct a model of our system.  It wasn’t a 

perfect system, but the overall response of the system to 

input was captured and it was with this model that we 

tuned out PID controller.  Figure 13 below shows a run 

where we gave the same inputs to our actual robot and our 

motor controller model.  To test out our PID controller 

algorithm, we developed a simulator for error analysis.  

The next plot shows the calculated position from the 

simulator and the actual position. 

 

Figure 13: Plot of the calculated position from the simulator versus the 

actual position. 

 

This simulator was then used to try different PID 

constants to evaluate their performance.  In software, the 

robot was given the task of traveling ~40 meters along a 

straight line.  It was given some initial error, and random 

noise was also added during the run to simulate 

inconsistencies that it will encounter in the field.  Shown 

in Figure 14 is the algorithm that we used to find optimal 

PID constants. Two vectors are input into the algorithm, 

the PID vector, which in our case starts at [0, 0, 0], and 

the dp vector, which is initialized to [1, 1, 1].  By 

changing the PID constants one at a time by the value in 

the dp vector associated with that constant (respectively), 

we can evaluate the performance, and adjust this new set 

of constants.  After this run, the method returns a number 

which represents the average error (the system can be 

tuned using either of the aforementioned methods of 

defining “error”).  It is a hill climbing algorithm, so it 

may converge on a local maximum instead of a global 

maximum.  To counter this problem, we ran the algorithm 

below multiple times with the PID and dp vector being 

initialized to random numbers. 
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Figure 14: Algorithm used to find the optimal PID constants. 

 

SAFETY SYSTEM 

 

The safety system ensures that the robot ceases operation 

and comes to a complete stop within 2 meters.  The 

emergency safety system on Redblade stops all motion in 

approximately 0.5 seconds and in less than 1 meters.  This 

was in worst case testing from full speed to a complete 

stop on grass. It is accomplished by engaging one of three 

emergency kill switches.  Two physical kill switches 

reside on either end of the vehicle (labeled as “A” in 

Figure 15), while the third switch is a remote handled by 

the user (labeled as “B” in Figure 15).  The safety system 

circuitry is shown in Figure 16.  Note that the switches are 

wired in series to allow a single switch to cause a 

complete stop of all motion. 

 

Figure 15: Redblade safety system includes two physical kill switches 

(A) and a remote kill switch (B).  Note that the remote actuates a third 

physical switch on board the vehicle (not shown). 

 

Figure 16: Circuit diagram of Redblade's safety system. 

 

We also added a red led safety beacon to the top of the 

robot which goes solid red whenever the vehicle power is 

turned on. This led light goes from solid to flashing 

whenever the robot enters into autonomous mode and 

goes back to solid when exited. 

 

FAILURE MODES & RECOVERY ACTIONS 

 

This section will describe the failure modes and recovery 

actions that may arise during vehicle operation.  Each 

mode and the corresponding recovery action is identified 

and explained below. 

 

A. UNRELIABLE GPS SOLUTION 

 

The possibility of high masking angle of buildings 

surrounding a competition site is potentially hazardous to 

the GPS system.  Poor dilution of precision and the higher 

multipath of the environment can cause the receiver to 

lose carrier phase lock on one or more satellites.  This can 

compromise the expected centimeter level accuracy of the 

system.   

 

To solve this problem, the robot switches over to 

odometry.  Our odometry solution uses the optical wheel 

encoders and the IMU to obtain a relative position.  The 

number of clicks received from the wheel encoders can be 
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directly translated into distance.  Our algorithm receives a 

reading from our left and right wheel encoders at 10 Hz 

and uses the following formulas to calculate position in 

our ENU reference frame.  The heading used is the 

heading measured by our IMU. 

distanceTraveled=(leftDistance+rightDistance)/2;      (2) 

newEastPosition+=distanceTraveled*sin(heading);     (3) 

newNorthPosition+=distanceTraveled*cos(heading); (4) 

 

Since this is a relative positioning solution, errors 

compound over time.  This is a backup solution, and 

through testing we found the error from our true position 

during a GPS outage isn’t large enough to cause any 

significant problems with our robot’s navigation.  Figure 

17 shows a graph of the position of the robot along an 

arbitrary run.  Figure 18 shows the error (compared to the 

GPS) of the odometry-calculated position along that run.  

The largest error is no more than 0.5m and it occurred 

briefly when the robot is about 18m away from the initial 

position. 

 

 

Figure 17: Plot of the GPS position versus the odometry position along 

an arbitrary run. 

 

 

 

Figure 18: Plot of the error between the odometry position versus the 

known GPS position over the distance of an arbitrary run. 

 

B. IMU DRIFT 

 

A problem we had with the IMU was the gyroscope's drift 

over time.  We've accounted for nearly all of the drift by 

using the zero-velocity update method.  Before Redblade 

begins its run, it averages the bias of the IMU while it's in 

a static environment, and this average bias is then 

subtracted from each new reading.  When the robot is 

navigating between two waypoints, we can dynamically 

calibrate the IMU drift by comparing the IMU readings to 

the vehicle heading computed from its path vector. 

 

C. VEHICLE SLIPPAGE 

 

Depending on the consistency of the terrain, it is possible 

to incur such load on the wheels to cause them to slip.  

This can result in heading changes and negatively impacts 

performance, especially if our GPS solution has failed and 

we are relying on odometry.  We can detect slippage by 

comparing changes in distance reported by the GPS and 

odometry. To do this, we keep a list of previous positions 

and calculate the change in distance between the current 

position and a position measured one second before from 

both the odometry and GPS. If the difference between 

these two calculated distances is greater than an 

experimentally determined threshold, then we know that 

the wheels are slipping.  
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D. CURRENT OVERLOAD 

 

When attempting to climb a very steep hill the amount of 

current requested by the drive motors maybe higher than 

the current rating of the wires which carry the power to 

the motors.  This overload situation is handled first by a 

current limiting parameter in the configuration of the 

motor controller.  This is set to 120 amps to prevent the 

motors' current carrying wires from overheating and 

causing potential damage to the wires or the motors. 

 

Two 60-amp circuit breakers were also installed as a form 

of redundancy.  These breakers are D-curve "slow blow" 

because electric motors can have an inrush current several 

times larger than their maximum sustainable current
[16]

.  

This slow blow capability allows the breakers to 

safeguard the drive system from any damaging overloads, 

but still allows for the high initial currents indicative of 

electric motors. 

 

E. SPEED CONTROL 

 

Redblade is capable of traveling up to a maximum speed 

of 9 mph, which is within the safety requirements of the 

competition.  There are two methods used to ensure that 

the vehicle does not move with extreme or erratic speeds.  

The first is a software limit on the driver that 

communicates with the RoboteQ motor controller.  This 

limit does not allow motor speed values to be sent to the 

controller if they will cause excessive speed.  Secondly, 

the path planner that generates movement vectors is 

limited to requesting a maximum speed at any given 

interval.  If the software receives a velocity that exceeds 

the speed limit, it decreases wheel speed proportionally to 

the amount of excess reported speed. 

 

 

COMMERCIALIZATION & IMPLEMENTATION 

 

Table 3 shows a detailed breakdown of the primary costs 

associated with the build of Redblade. 

 

Component Cost 

Projected 

Market Cost 

80/20 Frame $1,500  $825  

Wireless router $50  $15  

E7P Optical Encoders $96  $28  

Polycarbonate $360  $180  

Batteries $660  $330  

Sheet of Steel $30  $17  

ASUS Mobo/Intel 

i7/SSD/4GB RAM 
$675  $200  

RoboteQ DC motor 

controller 
$495  $146  

NPC Robotics 24V right 

angle motors 
$900  $450  

MicroStrain IMU 3DM-

GX1 
$1,500  $443  

Novatel GPS-702-GGL $1,200  $354  

Misc (wire, bolts, fasteners, 

etc.) 
$200  $110  

ProPak-V3  $12,000 $7,085 

OmniSTAR subscription $0  variable  

Bumblebee 2 $2,500  $738  

Total Cost to Manufacturer   $10,921  

Market Cost   $16,381  

Profit to Manufacturer   $5,460  
Table 3: The primary costs associated with the build of Redblade. 

 

The table above shows the total cost to produce Redblade 

in a market environment assuming a manufacturer can 

obtain parts for roughly 50% of their retail prices. The 

costs also take into account a depreciation of 10% per 

year for electronic components and a 10% increase in cost 

per year for metals (over a period of 5 years).  

 

A commercially available Redblade unit could be 

available with a permanently installed base station in lieu 

of an OmniSTAR subscription if it is planned to be used 

as a snowplow or lawnmower. This method would require 

a one-time survey of the property with the detachable 

GPS receiver in order to define the operating boundaries. 

If a movable tripod is used to hold the base station, a 30-



14 

 

minute recalibration is required every time the tripod is 

moved.  

 

CONCLUSIONS & RECOMMENDATIONS 

 

This iteration of Redblade is the most robust platform to 

date.  It is able to function autonomously as a snowplow, 

a lawnmower, and a navigating robot.  This ability has 

been achieved through a navigation sensor suite, 

including a GPS receiver, IMU, wheel encoders, stereo 

vision, and laser scanner and an in-house mechanical 

platform.  Several failure modes have been taken into 

consideration and recovery actions have been 

implemented to ensure robust performance. 

 

The next goal for our team is to compete in the 2014 ION 

Autonomous Snowplow Competition in Saint Paul, 

Minnesota.  This challenge will require an improved 

mechanical platform for winter weather. Obstacle 

detection and avoidance will not be necessary but the 

Bumblebee 2 and Lidar may be used to in place of the 

unreliable GPS solution in a downtown environment. In 

its current state described by this report, Redblade stands 

to serve as a reliable platform for autonomous multi-

functional operations to come in the future. 

 

The more long-term impact of this project is the valuable 

learning experience gained by the students working on the 

team.  Students learned trouble shooting, managing 

deadlines under a tight schedule, and interfacing with 

parts and supply sources.  They also learned specialized 

technical skills through this complicated project that 

required interfacing multiple components.  Additionally, 

Redblade has been an excellent outreach and promotional 

platform not only for Miami University's Engineering 

programs, but also for STEM and navigation education in 

general.   
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