
1

Redblade: Miami University's Multi-functional

Autonomous Robot

Students: Robert Cole, Richard Marcus, James Morton, Chad Sobota

Advisors: Dr. Yu Morton, Dr. Peter Jamieson

Miami University

BIOGRAPHY

Robert Cole is a first year master's student in Miami

University's Electrical and Computer Engineering

Department. His research is in autonomous indoor

navigation using an ultra-wideband radar and a robot's

odometry. After graduation, Bob plans to pursue work in

robotics and navigation.

Richard Marcus is a junior at Miami University studying

Electrical and Computer Engineering. His research

interests include GPS receivers and embedded systems.

Richard plans to pursue a master's degree after completing

his undergraduate work at Miami.

James Morton is a junior at Miami University studying

Electrical Engineering and Computer Science at Miami

University. His research interests consist of algorithmic

development for computational biology applications.

After completing a bachelor’s degree at Miami, James

plans to pursue a PhD in Computational Biology.

Chad Sobota is a fifth year senior at Miami University

with a dual major in Computer and Electrical

Engineering. He enjoys making his own laser projectors

and is an active member in Miami’s IEEE club. After

graduation Chad will be a commissioned officer in the

United States Air Force where he will work as a

Developmental Engineer at Shriver AFB, Colorado.

Dr. Yu (Jade) Morton is a professor of Electrical

Engineering at Miami University of Ohio. She received

her PhD in Electrical Engineering from Penn State

University and was a post-doctoral research fellow at the

University of Michigan. Her current research interests

are advanced GNSS receivers, ionosphere effects on GPS

performances, and non-GPS RF navigation sensors.

Dr. Peter Jamieson is an assistant professor in the

department of Electrical and Computer Engineering at

Miami University. His PhD was granted from the

University of Toronto. His research focuses on FPGA

architecture and CAD.

ABSTRACT

Redblade is a multi-functional autonomous robot with

two seasonal configurations which allow it to plow snow

in the winter and mow grass in the summer. We are

currently on the 5th generation of the Redblade platform

which is an updated version of last year's platform with a

new stereovision sensor and redesigned software

architecture. This report presents the design and

implementation of the Redblade mechanical platform,

sensor components, software architecture, control

algorithm, and safety systems.

2

INTRODUCTION

Autonomous robots capable of performing many

functions with accuracy and reliability in a timely manner

are highly desired in modern society. Redblade is

designed as an expandable host to perform in multiple

roles. It represents the next stage evolution of a multi-

functional autonomous robot since it is able to compete

in: autonomous navigation during the Intelligent Ground

Vehicle Competition, autonomous snowplowing during

the ION Autonomous Snowplow Competition, and

autonomous lawn mowing during the ION Robotic Lawn

Mower Competition. Redblade has been competing since

the inception of both ION sponsored competitions starting

with the ION Robotic Lawn Mower Competition in

2004
[1]

 followed by the ION Autonomous Snowplow

Competition in 2011
[2]

, however this year marks the first

entry of Redblade into the Intelligent Ground Vehicle

Competition
[3]

. This paper describes Redblade’s

mechanical platform, sensor electronics, control

algorithms, and safety mechanisms that make autonomous

operation possible. Redblade's objective is to compete and

win the 21
st
 Annual Intelligent Ground Vehicle

Competition.

More information, pictures, videos, and news articles can

be found at www.muredblade.com
[4]

.

TOP LEVEL REQUIREMENTS

An important step in engineering design is defining the

top level requirements for the system being developed.

This ensures that each necessary function that a system

must perform is given the appropriate amount of

consideration.

Table 1 presents a summary of the top level requirements

for Redblade.

Requirement
Specification

Component
Used

Component
Accuracy

Position
Accuracy:

< 22 cm

Novatel:

GPS-702-

GGL

Field test

results:

<16 cm

Heading
Accuracy:

< 2o/min

MicroStrain:

3DM-GX3-25

Static: ± 0.5°

Dynamic: ± 2.0°

Top speed:
4.03 m/s
(9 mph)

RoboteQ:

AX2850

NPC Robotics:

NPC-B81HT

 N/A

E-Stop Time:
< 2 sec

Remote Kill

Switch:

In-house

Field test

results:

<0.5 sec

E-Stop Stopping
Distance:

< 2 m

Mechanical

Platform:

In-house

Field test

results:

<1 m

Maximum
Scalable Incline:
40o

N/A

N/A

Battery Life
(idle): 10 hrs

Deka Solar:

 8GU1-DEKA

N/A

Battery Life
(active): 4 hrs

Deka Solar:

 8GU1-DEKA

N/A

Table 1: Summary table detailing the top-level requirements for the

accuracy of each component.

Additional requirements include the need for a higher

amp-hour power supply, a dependable mechanical

platform, enhanced control algorithm, and a CPU capable

of handling an intense computational burden. These are

discussed later in the report.

VEHICLE DESIGN

This section describes the overall mechanical design of

Redblade. We will discuss plowing strategy, mechanical

design, navigation system design, control system design,

software design, and system integration.

3

A. MECHANICAL DESIGN

Redblade’s mechanical platform consists of two tractor-

style drive wheels for traction in the rear, two caster

wheels for stability in the front, and an aluminum chassis

with polycarbonate paneling that houses the electrical

systems. An overview of the mechanical platform can be

seen in Figures 1 and 2.

The primary material that was used for the chassis is

80/20 aluminum bar, chosen for its ease of construction

and the large variety of materials that are able to be

mounted to it
 [5]

. Plate steel was used to mount electric

motors due to the need for increased strength. Clear

polycarbonate surrounds the chassis to protect the

electrical components from the outside environment and

allows us to easily diagnose problems. Thanks to the

lightness of the aluminum frame and the Plexiglas siding,

we are able to drastically reduce power consumption

compared to our winter setup which uses 225 lbs of lead

bricks which could simulate a heavier metal chassis.

Figure 1: Side profile of Redblade with dimensions shown.

Figure 2: Bottom profile of Redblade with dimensions shown.

This year's major changes include: adding the Bumblebee

2 stereovision sensor from Point Grey
[6]

, which is placed

on our elevated sensor rack, angled downwards. In order

to increase the viewing angle of our Bumblebee 2, we

elevated our sensor rack an additional two feet. The

Propak-v3 GPS receiver
[7]

 is now placed directly above

the wheel base to aid in the path planning algorithm. The

robot has been upgraded to be driven by two NPC 24 volt

electric high torque motors with 24:1 reduction gearboxes

that together can pull 120 amps continuously
[8]

.

The robot has a total of six 12 volt, 32 amp-hour gel-cell

batteries
[9]

. Two sets are wired in series to make 24 volt

sets used to power the drive motors. Since only one set is

in use at a time, we can swap to the second set without

having physically change out batteries and quickly swap

to the fully charged set using PowerWerx
[10]

 quick

disconnects. The last two 12 volt batteries are wired in

parallel for a total of 64 amp-hours and are used to power

the computer, router, safety system, etc. Figure 3 shows

the wiring diagram for Redblade's electrical system.

4

Figure 3: Wiring diagram for the Redblade power system.

B. NAVIGATION SYSTEM DESIGN

A MicroStrain 3DM-GX3-25 IMU
[11]

 is used to determine

the vehicle heading. It has an adjustable data rate to

facilitate interfacing with different clients. Redblade does

not use a magnetically corrected heading that is offered

by this sensor. This IMU was shown to accumulate

approximately 0.1
o
 of error for every minute of polling

time.

The NovAtel’s ProPak-V3 is a durable, triple frequency

GNSS receiver that tracks GPS + GLONASS as well as

L-Band and SBAS. This receiver was chosen mainly due

to its OmniSTAR
[12]

 capability, which would allow us to

attain a more accurate GPS solution using OmniSTAR’s

virtual reference station correction information. For the

GPS antenna, we choose the NovAtel GPS-702-GGL that

supports L1 and L2 frequencies for GPS + GLONASS as

well as support L-Band for OmniSTAR. This antenna is

also durable and waterproof, has excellent multipath

rejection, and has a highly stable phase center with

minimum variation between the L1 and L2 centers.

OmniSTAR has several subscription services from

OmniSTAR VBS (sub-meter accuracy with less than 1

meter error), OmniSTAR XP (15cm accuracy),

OmniSTAR G2 (10 cm accuracy with GPS + GLONASS

which is great in multipath environments), and

OmniSTAR HP (10 cm accuracy with GPS L1/L2 which

great for high performance in open area). We chose to go

with the OmniSTAR HP subscription since it would give

us the most accurate gps position during the IGVC, which

OmniSTAR generously gave us a free 90 day subscription

(renewable) for our robotic research and design.

Two US Digital E7MS quadrature optical encoders
[13]

were installed on both left and right wheels of the vehicle.

 Each encoder sends its signal on two different channels

with 90 degree offset. By using two channels it is

possible to determine the direction of movement if there

is no slippage. When the robot is moving forward, one

channel emits a pulse before the other. The RoboteQ

AX2580
[14]

 motor controller uses these encoders in its

internal feedback loop to ensure consistent speeds on both

motors.

Each sensor may provide inaccurate data depending on

the condition of the robot. This is discussed in more

detail in the Failure Modes & Recovery Actions section.

For obstacle detection, we use a SICK Laser

Measurement Sensor (LMS) 200 also known as a LIght

Detection And Ranging (LIDAR) sensor. The LMS 200 is

an extremely accurate 2D distance measurement sensor

that can be interfaced over RS-232 or RS-422 and

provides distance measurements over a 180 degree area

up to 80 meters away (10 meters away for objects with

only 10% reflectivity). This sensor works by beaming out

a fan of eye-safe laser light off a rotating mirror and any

object that breaks the fan will reflect the laser light back

to the sensor, which can be calculated into a distance

5

measurement based on the time it takes to come back to

the sensor. The LMS 200 has both a 'mm mode' where it

gets back distance measurements in millimeters (with a

detection range of up to 8.181 meters) and 'cm mode'

where it gets back distance measurements in centimeters

(with a detection range of up to 81.91 meters). It also has

the ability of scanning angular range of 100° with angular

resolutions of 1°, 0.5°, and 0.25° (shown in Figure 4

below) and angular range of 180° with angular resolutions

of 1° and 0.5° (shown in Figure 5 below). The LMS 200

has a scanning frequency of 75 Hz and response time of

13-53 ms. The distance measurements from testing have a

systematic error of +/- 15mm and statistical error (1

sigma) of 5 mm.

Figure 4: Measurement range 40° to 140° (view is from above, scan

happens from right to left)

Figure 5: Measurement range 0° to 180° (view is from above, scan

happens from right to left)

For our setup, we are in 'mm mode' using an angular

range of 180° with an angular resolution of 0.5°, which

gets us 180° vision of obstacles in front of our robot with

a total of 361 different millimeter range measurements of

obstacles less than 8.181 meters away from the sensor.

C. PROCESSOR & SOFTWARE DESIGN

All system processes are controlled by the onboard PC

running a Linux installation. Communication with this

device is accomplished via direct connection or through

an on-board wireless router. A processor capable of

handling a high computational load is needed. Figure 6

shows the resulting computer platform. Table 2 details

the platforms specifications.

Because Redblade was required to function in a vast

range of environments, weather-proofing was required to

ensure safe and reliable operation. A standard hard drive

contains components that are likely to freeze in low

temperatures. Redblade uses a solid-state drive (SSD) to

mitigate this risk as well as increasing shock resistance

and speed. In addition to having better temperature

endurance, the SSD is able to withstand much higher

degrees of vibration and impact. The power consumption

of the computer as a whole is reduced 85% from

approximately 20 Watts to no more than 1.7 Watts.

Figure 6: Redblade's computer platform in its housing. This housing

can be easily removed from the vehicle if necessary.

Component Manufacturer Performance

CPU Intel i7-2600K 3.4GHz quad-core

Memory Corsair XMS 16 GB

Solid-State

Drive
Intel 320 Series 80 GB

Table 2: Computer platform specifications.

6

Our software is written in C or C++ for speed. The

measurements from all of the sensors will enter our ROS

navigation node which will determine how to control the

drive motors.

A more detailed representation of the component

integration can be seen in Figure 7. The red boxes

represent sensors while the blue boxes represent other

physical components. The green boxes gather all of the

information from these sensors and components and

perform the communication between them and the

computer.

Figure 7: System integration block diagram. Note that some sensors are

not used during IGVC operation.

D. SYSTEM INTEGRATION

Redblade features a three-layer system architecture that is

abstracted in Figure 8. The top layer is the navigation and

obstacle avoidance sensor suite. The current generation

of the Redblade navigation sensor suite includes a

Novatel GPS-702-GGL antenna with a ProPak-V3

receiver, a MicroStrain 3DM-GX3-25 inertial sensor, and

two optical wheel encoders as part of the integrated motor

drive system. The obstacle avoidance sensor suite

includes our SICK Lidar and Bumbleebee 2 cameras.

Figure 8: Three layer system architecture abstraction. Note that the

remote monitoring and control is optional. The latter is disabled during

autonomous operation.

The middle layer is the collection of software that

provides driver functions for the sensors, sensor fusion

algorithms, path planning, and vehicle motion control

algorithm. The bottom layer is the mechanical platform,

electronics hardware, including the motor controller,

safety systems, power supplies, and processors that carry

out the software functions.

Redblade utilizes the three navigation sensors (GPS,

IMU, and optical wheel encoder) to determine its

position, heading, and velocity (PHV). The vehicle’s PHV

information along with its predetermined destinations is

processed by an on-board computer that implements a

Proportional-Integral-Derivative (PID) control algorithm

to adjust vehicle heading. Both remote and on-board

emergency kill switches allow an operator to stop all

robotic motion.

E. SOFTWARE STRATEGY

ROS (Robot Operating System) is an open source

software suite that promises to democratize software

development in the general field of robotics. ROS

software consists of libraries and tools that provide

hardware abstraction, device drivers, visualizers,

message-passing, package management and more.

Computation in ROS is segmented into a data abstraction

7

called a node. Each node in ROS is compiled in C++ or

Python. Nodes can perform a wide variety of tasks such

as sensor measurements, data processing or controller

computation or data visualization. Each node has the

ability to publish data to other nodes or subscribe to data

streams provided by other nodes.

Each node in ROS runs on a separate CPU thread,

meaning that all 8 cores on the CPU are saturated for high

speed operations. Furthermore, our CPU is overclocked to

3.8GHz and 16 GB of RAM is installed to accommodate

for the temporary storage for large data structures and

caching. In this way, much of our data can be handled

without reading and writing to disk. For further speedup,

programs using OpenCV and Eigen are compiled with

SSE intrinistics to enable vectorization.

NAVIGATION

A. MAPPING

Redblade uses a collection of ROS nodes that work

together in order to implement SLAM (Simultaneous

Localization and Mapping); slam_gmapping,

base_local_planner, base_global_planner, and

move_base.

When Redblade starts a run it begins creating a map with

the origin of its local and global reference frames at its

starting point. The local coordinate frame is centered

between its wheels with the x-axis pointing towards the

front and the y-axis pointing towards its left side. This

local frame will move along with Redblade wherever it

goes, however the origin of the global frame stays static.

As the robot moves through the course it samples point-

clouds from the Bumblebee 2 and Lidar at a rate of 5 hz.

In order to use these readings from a correct frame of

reference Redblade uses a node based on a transform tree

that shifts the coordinates of each point-cloud based on

the sensors translation distance in x,y,z and rotation angle

in roll, pitch, yaw from the origin point of the robot.

The Bumblebee 2 point-cloud is then pre-analyzed by a

program using OpenCV to perform a Canny Edge

Detection algorithm that will identify white lines, barrels,

and colored flags, mark them as obstacles, and pass this

new point-cloud to the costmap_2d node. The Lidar data

is fed directly to the costmap_2d node.

Inside the costmap_2d node any data points within a

designated radius of 20 feet from the center of the robot

are treated as obstacles. This radius is imposed to prevent

noise at the limits of our sensors’ ranges from being

mistaken as obstacles. These points are then used to

populate a voxel 3-D grid which acts as our map, on

which each point holds one of three values; unseen,

obstacle present, or no obstacle present.

Of course, In order for the robot to plan a path the robot

must have a goal to reach, which may be set through a

configuration file that lists the different provided GPS

waypoints. Once Redblade has come within a given

radius of its current waypoint, it will then move on to the

next point in the list until the list is exhausted. However,

in order to reach each GPS waypoint Redblade must set a

series of smaller points on our map that help it move

around the known obstacles. In order to do this we use

base_local_planner and global_local_planner nodes are

able to plan the shortest trajectory path towards our goal--

a GPS waypoint--that avoids the known obstacles.

Thanks to the costmaps, once the robot has observed an

obstacle it will remember that for the rest of its run, which

8

means that Redblade will not take the same dead-end

twice.

B. EXTENDED KALMAN FILTER

In our current setup, we have five sensors. Some of these

sensors have very fast update rates such as the IMU and

the wheel encoders; however these sensors are not very

accurate by themselves. For instance, the IMU is known

to have drifting problems. In order to make the best of all

of the sensor measurements to obtain an accurate estimate

of the current position and the positions of the

surrounding obstacles, an extended Kalman Filter is used.

The idea behind a Kalman Filter is any sensor, regardless

of how bad it is, can be integrated into the robot to

provide a better estimate of its location and surroundings.

The Kalman filter contains two crucial ingredients: a

dynamics model and a measurement model. The

dynamics model can model the position and error

covariance of the robot’s physical position in the absence

of sensor measurements. For our platform, this model

gives information about x and position in addition to x

and y velocity, heading, angular velocity, angular

acceleration and IMU drift bias. The IMU is known to

have an error bias that accumulates over time and in order

to properly model this sensor, its error bias needs to be

included in to the dynamics model. The overall dynamics

model can be formulated as the following set of linear

equations

 is the current state of the robot, is a matrix of

coefficients that relate the current state of the robot to the

past state of the robot. is the control input which

includes motor speeds and, is a matrix of coefficients

that relate the current state of the robot to the control

inputs. is a random white Gaussian vector with a

known covariance representing the noise in the robot’s

environment.

The measurement model gives information about reliable

the sensor readings are. For our platform, we have five

different measurement equations – one for each sensor.

In the original Kalman filter equations, all of the

equations in the dynamics and sensor models must be

linear. However, since both the LIDAR and stereovision

cameras are used as range sensors for SLAM, and range

equations are nonlinear, a linear approximation must be

made for these sensor measurements – a common

technique used in the Extended Kalman Filter. The

overall measurement model can be represented by the

following set of linear equations.

 is the current set of measurements and is the a

matrix of coefficients that relate the current robots state to

the current set of measurements. is a random white

Gaussian vector with a known covariance representing the

noise in the sensors measurements.

Using the dynamics and sensor models, the propagation

equations can be readily applied as follows:

Where signifies the estimate of the current robot’s

state without measurements, is the error covariance

representing the uncertainty involved in estimating the

robots current state and is the covariance of the .

These propagation equations are critical for calculating

the estimated position and uncertainty in the absence of

measurements. The presence of measurements, the

update equations can be applied as follows:

9

Where denotes the robot’s state and denotes the

robots uncertainty after an update. It has been shown that

this newly update readings always improve upon existing

sensor readings.

C. STEREO IMAGE PROCESSING

To handle obstacle avoidance and line detection, Point

Gray’s the Bumblebee2 is used. These stereo cameras

provide images at a frame rate of 20fps at with 0.8MP at

1032 by 776 pixel resolution. The Bumblebee 2 cameras

can generate 3-D point clouds with color information and

are accurate up to 5 meters. In order to integrate these

cameras into ROS, these cameras need to be calibrated.

Camera calibration consists of tuning two sets of

parameters: intrinsic parameters and extrinsic parameters.

Intrinsic parameters take into consideration the distortion

of the cameras. Extrinsic consider the physical position

of the cameras relative to each other necessary for

conducting stereo rectification. Stereo rectification is

used to generate point clouds that also give depth

information about each pixel seen by the Bumblebee.

Figure 9: Camera calibration conducted using the ROS camera

calibration program.

The ROS camera calibration program collects pictures

simultaneously with both cameras and identifies the

corners of the checkerboard in order to calculate these

camera calibration parameters. Once the cameras are

calibrated, images retrieved from the Bumblebee2 are sent

to the ROS stereo image pipeline where undistorted

images, disparity images and point clouds are generated.

Figure 10: The left and middle images are raw images from the

Bumblebee2. The right image is the disparity image generated by the
ROS stereo image pipeline

The point clouds from the ROS stereo image pipeline are

then used for obstacle detection and line detection. The

Canny Edge Detection algorithm is applied on the color

information provided by the point clouds for position

estimation of the obstacles and white boundary lines.

D. CONTROL SYSTEM DESIGN

Redblade uses a PID control algorithm for navigation

between waypoints
[15]

. This algorithm adjusts wheel

speeds based on present and past errors. We have two

methods of defining the “error” of our robot. The first

method drives heading error to zero and the second drives

the distance from a line to zero. We are in the process of

evaluating the performance of both approaches.

The first method starts by accepting a waypoint vector as

its input. This waypoint (xd, yd) will be the destination

waypoint for this method. (x0, y0) is the starting point.

Both of these waypoints are defined in a local ENU

reference frame with the origin being where our robot

began. At any point during its travel between these two

waypoints, its position (x, y) can be found with the GPS,

and its heading (ϴ0) can be found with the IMU. Using

this current position (x, y) and the destination (xd, yd), the

desired heading (ϴd) can be calculated using equation (1):

(1)

The difference between ϴd and ϴ0 serves as the error

input to the PID loop. When the KP, KI, and KD

coefficients are selected correctly, they create a signal

10

which drives the motors and minimizes this error. Figure

11 shows a diagram of this error.

Figure 11: Diagram of how the PID error in heading is calculated.

Figure 12 below shows a block diagram of the PID

feedback loop using this method.

Figure 12: PID feedback loop using the first method that drives the

heading error to zero.

The motor controller model is designed to take the update

rates of all our sensors and controllers into account.

Based on our wheelbase width, acceleration speeds, motor

controller update intervals, and PID update interval we

were able to construct a model of our system. It wasn’t a

perfect system, but the overall response of the system to

input was captured and it was with this model that we

tuned out PID controller. Figure 13 below shows a run

where we gave the same inputs to our actual robot and our

motor controller model. To test out our PID controller

algorithm, we developed a simulator for error analysis.

The next plot shows the calculated position from the

simulator and the actual position.

Figure 13: Plot of the calculated position from the simulator versus the

actual position.

This simulator was then used to try different PID

constants to evaluate their performance. In software, the

robot was given the task of traveling ~40 meters along a

straight line. It was given some initial error, and random

noise was also added during the run to simulate

inconsistencies that it will encounter in the field. Shown

in Figure 14 is the algorithm that we used to find optimal

PID constants. Two vectors are input into the algorithm,

the PID vector, which in our case starts at [0, 0, 0], and

the dp vector, which is initialized to [1, 1, 1]. By

changing the PID constants one at a time by the value in

the dp vector associated with that constant (respectively),

we can evaluate the performance, and adjust this new set

of constants. After this run, the method returns a number

which represents the average error (the system can be

tuned using either of the aforementioned methods of

defining “error”). It is a hill climbing algorithm, so it

may converge on a local maximum instead of a global

maximum. To counter this problem, we ran the algorithm

below multiple times with the PID and dp vector being

initialized to random numbers.

11

Figure 14: Algorithm used to find the optimal PID constants.

SAFETY SYSTEM

The safety system ensures that the robot ceases operation

and comes to a complete stop within 2 meters. The

emergency safety system on Redblade stops all motion in

approximately 0.5 seconds and in less than 1 meters. This

was in worst case testing from full speed to a complete

stop on grass. It is accomplished by engaging one of three

emergency kill switches. Two physical kill switches

reside on either end of the vehicle (labeled as “A” in

Figure 15), while the third switch is a remote handled by

the user (labeled as “B” in Figure 15). The safety system

circuitry is shown in Figure 16. Note that the switches are

wired in series to allow a single switch to cause a

complete stop of all motion.

Figure 15: Redblade safety system includes two physical kill switches

(A) and a remote kill switch (B). Note that the remote actuates a third

physical switch on board the vehicle (not shown).

Figure 16: Circuit diagram of Redblade's safety system.

We also added a red led safety beacon to the top of the

robot which goes solid red whenever the vehicle power is

turned on. This led light goes from solid to flashing

whenever the robot enters into autonomous mode and

goes back to solid when exited.

FAILURE MODES & RECOVERY ACTIONS

This section will describe the failure modes and recovery

actions that may arise during vehicle operation. Each

mode and the corresponding recovery action is identified

and explained below.

A. UNRELIABLE GPS SOLUTION

The possibility of high masking angle of buildings

surrounding a competition site is potentially hazardous to

the GPS system. Poor dilution of precision and the higher

multipath of the environment can cause the receiver to

lose carrier phase lock on one or more satellites. This can

compromise the expected centimeter level accuracy of the

system.

To solve this problem, the robot switches over to

odometry. Our odometry solution uses the optical wheel

encoders and the IMU to obtain a relative position. The

number of clicks received from the wheel encoders can be

12

directly translated into distance. Our algorithm receives a

reading from our left and right wheel encoders at 10 Hz

and uses the following formulas to calculate position in

our ENU reference frame. The heading used is the

heading measured by our IMU.

distanceTraveled=(leftDistance+rightDistance)/2; (2)

newEastPosition+=distanceTraveled*sin(heading); (3)

newNorthPosition+=distanceTraveled*cos(heading); (4)

Since this is a relative positioning solution, errors

compound over time. This is a backup solution, and

through testing we found the error from our true position

during a GPS outage isn’t large enough to cause any

significant problems with our robot’s navigation. Figure

17 shows a graph of the position of the robot along an

arbitrary run. Figure 18 shows the error (compared to the

GPS) of the odometry-calculated position along that run.

The largest error is no more than 0.5m and it occurred

briefly when the robot is about 18m away from the initial

position.

Figure 17: Plot of the GPS position versus the odometry position along

an arbitrary run.

Figure 18: Plot of the error between the odometry position versus the

known GPS position over the distance of an arbitrary run.

B. IMU DRIFT

A problem we had with the IMU was the gyroscope's drift

over time. We've accounted for nearly all of the drift by

using the zero-velocity update method. Before Redblade

begins its run, it averages the bias of the IMU while it's in

a static environment, and this average bias is then

subtracted from each new reading. When the robot is

navigating between two waypoints, we can dynamically

calibrate the IMU drift by comparing the IMU readings to

the vehicle heading computed from its path vector.

C. VEHICLE SLIPPAGE

Depending on the consistency of the terrain, it is possible

to incur such load on the wheels to cause them to slip.

This can result in heading changes and negatively impacts

performance, especially if our GPS solution has failed and

we are relying on odometry. We can detect slippage by

comparing changes in distance reported by the GPS and

odometry. To do this, we keep a list of previous positions

and calculate the change in distance between the current

position and a position measured one second before from

both the odometry and GPS. If the difference between

these two calculated distances is greater than an

experimentally determined threshold, then we know that

the wheels are slipping.

13

D. CURRENT OVERLOAD

When attempting to climb a very steep hill the amount of

current requested by the drive motors maybe higher than

the current rating of the wires which carry the power to

the motors. This overload situation is handled first by a

current limiting parameter in the configuration of the

motor controller. This is set to 120 amps to prevent the

motors' current carrying wires from overheating and

causing potential damage to the wires or the motors.

Two 60-amp circuit breakers were also installed as a form

of redundancy. These breakers are D-curve "slow blow"

because electric motors can have an inrush current several

times larger than their maximum sustainable current
[16]

.

This slow blow capability allows the breakers to

safeguard the drive system from any damaging overloads,

but still allows for the high initial currents indicative of

electric motors.

E. SPEED CONTROL

Redblade is capable of traveling up to a maximum speed

of 9 mph, which is within the safety requirements of the

competition. There are two methods used to ensure that

the vehicle does not move with extreme or erratic speeds.

The first is a software limit on the driver that

communicates with the RoboteQ motor controller. This

limit does not allow motor speed values to be sent to the

controller if they will cause excessive speed. Secondly,

the path planner that generates movement vectors is

limited to requesting a maximum speed at any given

interval. If the software receives a velocity that exceeds

the speed limit, it decreases wheel speed proportionally to

the amount of excess reported speed.

COMMERCIALIZATION & IMPLEMENTATION

Table 3 shows a detailed breakdown of the primary costs

associated with the build of Redblade.

Component Cost

Projected

Market Cost

80/20 Frame $1,500 $825

Wireless router $50 $15

E7P Optical Encoders $96 $28

Polycarbonate $360 $180

Batteries $660 $330

Sheet of Steel $30 $17

ASUS Mobo/Intel

i7/SSD/4GB RAM
$675 $200

RoboteQ DC motor

controller
$495 $146

NPC Robotics 24V right

angle motors
$900 $450

MicroStrain IMU 3DM-

GX1
$1,500 $443

Novatel GPS-702-GGL $1,200 $354

Misc (wire, bolts, fasteners,

etc.)
$200 $110

ProPak-V3 $12,000 $7,085

OmniSTAR subscription $0 variable

Bumblebee 2 $2,500 $738

Total Cost to Manufacturer $10,921

Market Cost $16,381

Profit to Manufacturer $5,460
Table 3: The primary costs associated with the build of Redblade.

The table above shows the total cost to produce Redblade

in a market environment assuming a manufacturer can

obtain parts for roughly 50% of their retail prices. The

costs also take into account a depreciation of 10% per

year for electronic components and a 10% increase in cost

per year for metals (over a period of 5 years).

A commercially available Redblade unit could be

available with a permanently installed base station in lieu

of an OmniSTAR subscription if it is planned to be used

as a snowplow or lawnmower. This method would require

a one-time survey of the property with the detachable

GPS receiver in order to define the operating boundaries.

If a movable tripod is used to hold the base station, a 30-

14

minute recalibration is required every time the tripod is

moved.

CONCLUSIONS & RECOMMENDATIONS

This iteration of Redblade is the most robust platform to

date. It is able to function autonomously as a snowplow,

a lawnmower, and a navigating robot. This ability has

been achieved through a navigation sensor suite,

including a GPS receiver, IMU, wheel encoders, stereo

vision, and laser scanner and an in-house mechanical

platform. Several failure modes have been taken into

consideration and recovery actions have been

implemented to ensure robust performance.

The next goal for our team is to compete in the 2014 ION

Autonomous Snowplow Competition in Saint Paul,

Minnesota. This challenge will require an improved

mechanical platform for winter weather. Obstacle

detection and avoidance will not be necessary but the

Bumblebee 2 and Lidar may be used to in place of the

unreliable GPS solution in a downtown environment. In

its current state described by this report, Redblade stands

to serve as a reliable platform for autonomous multi-

functional operations to come in the future.

The more long-term impact of this project is the valuable

learning experience gained by the students working on the

team. Students learned trouble shooting, managing

deadlines under a tight schedule, and interfacing with

parts and supply sources. They also learned specialized

technical skills through this complicated project that

required interfacing multiple components. Additionally,

Redblade has been an excellent outreach and promotional

platform not only for Miami University's Engineering

programs, but also for STEM and navigation education in

general.

ACKNOWLEDGMENTS

The Redblade team would like to thank the United States

Army Tank Automotive Research, Development and

Engineering Center (TARDEC), the Association for

Unmanned Vehicle Systems International (AUVSI),

Oakland University, and all other sponsors for holding the

competition. The team received the funding support from

Miami University Office for Advancement of Research

and Scholarship, School of Engineering and Applied

Science Dean’s Office, the Department of Electrical and

Computer Engineering, and the Department of Computer

Science and Systems Analysis. Additionally, the team

appreciates the technical guidance and support from Mr.

Jeff Peterson from Miami University as well as the efforts

of Mrs. Michele Lea for her administrative support.

MicroStrain provided an educational discount for the

3DM-GX3-25 IMU used in the project.

REFERENCES

[1] McNally, B., M. Stutzman, C. Korando, J. Macasek,

C. Mantz, S. Miller, Y. Morton, S. Campbell, J.

Leonard, “The Miami Red Blade: An Autonomous

Lawn Mower,” Proc. 2004 ION Annual Meeting, pp.

538-542.

[2] R. Wolfarth, S. Taylor, A. Wibowo, B. Williams, Y.

Morton, P. Jamieson, "Redblade: Miami University's

Multi-Functional Autonomous Robot," 2011 ION

International GNSS Conference.

[3] IGVC, “The 21th Annual Intelligent Ground Vehicle

Competition,” 2013, retrieved from http://www.

igvc.org.

[4] “Redblade: Miami University’s Multi-Functional

Autonomous Robot,” 2013, retrieved from

http://www.muredblade.com.

[5] 80/20 Inc., "T-Slotted Framing," 80/20 Inc., 2005,

retrieved from http://www.8020.net/T-Slot-1.asp.

15

[6] Point Grey, “Register Reference for Point Grey

Digital Cameras”, 2013, retrieved from

http://ww2.ptgrey.com/stereo-vision/bumblebee-2.

[7] ProPak-V3 Receiver, “ProPak-V3™ Triple-

Frequency GNSS Receiver Overview”, NovAtel,

2013, retrieved from http://www.novatel.com/

products/gnss-receivers/enclosures/propak-v3/.

[8] NPC-B81, “NPC-B81HT High Torque Geared

Motor,” The Robot Market Place, 2013, retrieved

from http://www. robotmarketplace.com.

[9] Deka, "Solar Photovoltaic Batteries," Deka East Penn

Manufacturing Co. Inc., retrieved from

www.dekebatteries.com.

[10] PowerWerx, "Anderson Powerpole & SB Multipole

Series Sets," PowerWerx, retrieved from

http://www.powerwerx.com.

[11] MicroStrain, "Technical Product Overview: 3DM-

GX3-25," MicroStrain, retrieved from

http://microstrain.com.

[12] OmniSTAR, “Leader in Differential GNSS Solutions

Worldwide,” 2013, retrieved from http://www.

omnistar.com.

[13] US Digital, “E7P OEM Optical Kit Encoder”, US

Digital, 2012, retrieved from

http://www.usdigital.com.

[14] RoboteQ, Inc., “AX2550 AX2850 Dial Channel High

Power Digital Motor Controller User's Manual,”

2007, RoboteQ, retrieved from www.roboteq.com.

[15] Wikipedia contributors, “PID Controller,” 2012,

Wikipedia, The Free Encyclopedia, retrieved from

http://en.wikipedia.org/wiki/PID_controller.

[16] Wikipedia contributors, “Inrush Current,” 2011,

Wikipedia, The Free Encyclopedia, retrieved from

http://en.wikipedia.org/wiki/Inrush_current.

http://ww2.ptgrey.com/stereo-vision/bumblebee-2

